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Abstract: At a regional scale, damage and loss from earthquakes can come largely from ground failures driven 
by mechanisms such as liquefaction. Future rising sea levels are expected to raise the groundwater table in 
coastal areas, exacerbating liquefaction in the event of an earthquake. Past regional liquefaction studies have 
been limited by not considering multiple earthquake events, and changes in groundwater. This study bridges 
those gaps through a regional hazard analysis of probabilistic future earthquakes that can be combined with 
loss and recovery simulation. We provide a framework to simulate current and future regional soil and 
groundwater properties under sea level rise.  

1. Introduction 
Liquefaction is a phenomenon causing ground failure during earthquakes. Coarse grains of saturated soil 
become suspended in the pore water during ground shaking, and the entire soil matrix acts as a liquid. This 
can cause several surface impacts including sand boils, lateral spreading, and uneven settlement, with 
physical impacts such as broken pipes, cracked pavement, and foundation settlement (National Academies of 
Sciences, Engineering, and Medicine, 2021). Liquefaction has been observed after many earthquakes (e.g. 
van Ballegooy et al. 2014). Liquefaction can cause extensive damage yet is not always considered in 
earthquake risk analyses, and research within geotechnical engineering mostly investigates triggering (e.g. 
Holzer et al. 2011, Todorovic and Silva 2022, Zhu et al. 2017). The liquefaction potential index (LPI) is a metric 
developed by Iwasaki et al. (1978), that aggregates liquefaction potential over a soil column. Numerous 
functions for LPI have been fit to empirical data (e.g. Moss et al. 2006, Boulanger and Idriss 2014), and these 
LPI-based methods have been related to severity or manifestation (e.g. Holzer et al. 2002, Kim et al. 2021). 
Some work has been done to expand the methods to further assess the severity of liquefaction, probability of 
liquefaction, impacts on structures, and regional analysis (e.g. Li et al. 2006, Wu et al. 2020); however, few 
studies perform a comprehensive probabilistic liquefaction hazard analysis (National Academies of Sciences, 
Engineering, and Medicine, 2021). Probabilistic liquefaction hazard analysis combines the probability of 
liquefaction occurrence with the likelihood of triggering earthquakes, resulting in annual rates of liquefaction 
(Goda et al. 2011). 

A less common piece of the liquefaction hazard framework translates ground failure into damage to the built 
environment. Liquefaction is a concern for structures, buried pipes, roadways, and other infrastructure 
(National Academies of Sciences, Engineering, and Medicine, 2021). Risk analysis uses models that predict 
the probability of damage, categorized as a damage state, given a hazard intensity, known as fragility 
functions. Though damage states and fragility functions are common in earthquake engineering, liquefaction 
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fragility functions are uncommon and often rely on input intensity measures such as ground deformation (e.g. 
Bird et al., 2006), which is not predicted in an LPI-based method. They also require information about the 
foundation and bearing pressure of buildings (Sahir and Pak, 2010), which would require additional 
assumptions about the building stock. Other models use peak ground acceleration (PGA) as the input, which 
ignores the soil type and groundwater level (Koutsourelakis et al., 2002), or are conditioned on groundwater 
depth and earthquake magnitude (Holzer et al., 2011). Other simplified models such as HAZUS may be used, 
especially for regional-scale analysis, for an aggregate sense of impacts on built infrastructure (FEMA, 2020). 
Though many methods exist to quantify liquefaction hazard, they do not seamlessly fit together for a complete 
risk analysis.  

For soils to liquefy, they must be saturated and, thus, must be lower than the groundwater table. Liquefaction 
probability varies seasonally because of the changing groundwater table (Pokhrel et al., 2022) and reaches 
higher thresholds as groundwater becomes shallower (Chung and Rogers, 2013). As sea level rise (SLR) is 
expected to cause shallow coastal groundwater to shoal, more soil will be susceptible to liquefaction in coastal 
areas. This change will affect the soil closest to the surface, which will become newly saturated and is most 
likely to cause surface manifestation. Thus, small increases in liquefiable soil close to the surface may have a 
large impact on the liquefaction potential of a site and, on a regional scale, increase the extent of a community 
that may experience liquefaction. Some regional studies have examined how the rising sea level may alter the 
liquefaction risk around the San Francisco Bay area (Wang et al., 2021; Wang and Chen, 2018; Grant et al., 
2021). They all found that the hazard extent will increase; however, they use many simplifying assumptions 
and are conditioned on earthquake events, leaving gaps in our understanding of the full change in hazard and 
risk.  

This paper describes a regional probabilistic liquefaction model that includes changing groundwater levels 
under sea level rise scenarios. Our model integrates changes in groundwater data and is applied to a case 
study in Alameda, California, USA. Alameda is a city located on a liquefaction-susceptible island in the San 
Francisco Bay. The preliminary results show that sea level rise is expected to increase the liquefaction hazard 
in the region, with both higher severity and wider areas that may be impacted. This approach will enable us to 
assess risk due to losses from ground shaking and liquefaction and assess how households may be impacted 
under future conditions.  

2. Model setup 
This paper focuses on the addition of sea level rise (SLR) to probabilistic regional liquefaction hazard and risk 
analysis. We use the framework developed by Mongold and Baker (forthcoming) with minor adjustments. The 
input data requirements include soil properties, groundwater, and ground shaking across the study area. 
Geospatial simulation is used to generate data across the region between known, measured data points. 
Liquefaction potential index (LPI) is the metric we use to proxy liquefaction severity. LPI depends on all the 
data mentioned above, calculated as  

 
𝐿𝑃𝐼 =  (1 −  𝐹𝑆)  ·  𝑤(𝑧)𝑑𝑧 (1) 

where wd is the depth from the ground surface to the groundwater table, w(z) is a weighting factor, linearly 
decreasing with depth, and FS is the factor of safety, calculated as  

 
𝐹𝑆 =  

𝐶𝑅𝑅

𝐶𝑆𝑅
 (2) 

where CRR is the cyclic resistance ratio and CSR is the cyclic stress ratio, representing the strength of soil 
and the load induced by the earthquake ground shaking. Both of these parameters are determined by empirical 
LPI equations (Moss et al. 2006, Boulanger and Idriss 2014).  

Figure 1 shows the overall workflow with consideration of sea level rise. One set of input parameters is used 
to generate soil and ground shaking simulations. Thus, the only change between each SLR scenario is the 
groundwater level and its effect on the soil properties, such as effective vertical stress. Each of these 
combinations of inputs are run through the main liquefaction calculations. An output is generated for each SLR 
scenario that includes expected LPI maps and the rate of liquefaction.  
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Figure 1. Schematic of simulation flow with multiple sea level rise (SLR) scenarios.  

2.1. Groundwater table 

The groundwater table in coastal areas is expected to change under sea level rise (Befus 2020a), and has 
been modelled by multiple agencies (e.g. Befus 2020b, May et al. 2022). These models are used as input to 
the groundwater table across a region of interest. The first step is to choose a data source and the second is 
to join the groundwater data with the points across the case study area.  

We utilize water table projections from the United States Geological Survey (USGS) in this work (Befus 2020b). 
There are other options for this data, notably from a San Francisco Estuary Institute (SFEI) report (May et al. 
2022). Both data sources include many SLR scenarios, with USGS having 12 and SFEI having 10. While SFEI 
uses a linear model focusing on near-shore areas, USGS has a full MODFLOW model to run homogenous, 
steady-state equations (Hughes et al. 2017). The USGS data also incorporates multiple values of marine 
boundary conditions, at mean higher-high water (MHHW) level and local mean sea level (LMSL) and three 
values of hydraulic conductivity, 0.1m/day, 1.0m/day, and 10m/day. SFEI uses bay tidal datums to estimate 
slope towards the bay and approximates the potential drainage of groundwater due to tributaries and lagoons. 
The USGS models unconfined water tables under natural conditions, and the SFEI focuses on the highest 
annual level of groundwater. Finally, USGS is fully simulated, while SFEI is based on groundwater data and 
past modelling. Both data sources are useful in their own contexts, but for the case of probabilistic analysis, 
we utilize the USGS data due to its additional variation of marine boundary condition and hydraulic conductivity, 
and that it represents a more moderate value, as opposed to focusing on the highest water level.  

Once the data source is chosen, some pre-processing is necessary to use the data in the analysis. Points 
across the island are used to perform the regional analysis. Water depth is interpolated from nearby data to 
the points across the study area. However, applying groundwater data to these points can cause multiple 
challenges. The first challenge is that some points in the study area are considered to be submerged 
underwater in the groundwater data (black ‘X’ in Figure 2). This discrepancy occurs when points are very close 
to the shore or after sea level rise has caused them to become underwater. In these submerged cases, the 
point is assumed to have groundwater at the ground surface for liquefaction calculations and is flagged as 
being submerged. The second challenge that can occur is that points are missing values, where there is no 
data from the groundwater model (red ‘X’ in Figure 2). This may occur far from the shore or at edges of 
geographic boundaries such as county lines. These points can be extrapolated from nearby data. A threshold 
value of -135 is used as a cutoff in case the point is near one submerged datapoint, which weighs as -500. If 
the point is not submerged, then the value is interpolated from only existing data on land (not submerged), the 
same method as the interpolated points. The submerged points have a water depth of 0m and are marked as 
submerged so that they can be considered in future analysis. This process results in values of depth to 
groundwater for each point of interest within the case study area.  
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Figure 2. Plot of points across Alameda over the groundwater data, where blue is coastal water and brown is 
land. Round points indicate valid groundwater levels, and ‘X’ indicate challenging points, either submerged 

or out-of-bounds. Map is for MHHW with 1.0m/day hydraulic conductivity and 0m of SLR.  

This groundwater pre-processing produces depths to groundwater for points across the case study area for 
each marine boundary condition and hydraulic conductivity value. Figure 3 shows the baseline case (0m of 
SLR) with LMSL and 1.0m/day hydraulic conductivity. The edges and western side of the case study area 
exhibit the shallowest groundwater, with a deeper water table in the inland eastern parts of the island.  

 

Figure 3. Depth to groundwater for sea level rise scenario of 0m, lower mean sea level tide, and 1m/day 
hydraulic conductivity.  

The rise in groundwater due to SLR is shown in Figures 4 and 5, for 1m and 2m of SLR, respectively. Both are 
shown from 0m of SLR as a baseline (Figure 3). These changes are for LMSL and 1m/day hydraulic 
conductivity. Both of these SLR cases show that most locations exhibit a rise in the groundwater table, with 
points closer to the shoreline having a larger magnitude of rise. Points shown in white in Figures 4 and 5 do 
not exhibit a change in depth to groundwater under the sea level rise scenario. For this combination of marine 
boundary condition and hydraulic conductivity, few locations remain the same. A lower hydraulic conductivity 
value (0.1 m/day) results in more white space, or fewer locations with a rise in groundwater. A higher hydraulic 
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conductivity (10 m/day) results in more widespread rise in the groundwater across the case study area. Better-
constrained hydraulic conductivity values would decrease uncertainty in the groundwater input maps.  

 

Figure 4. Rise in groundwater for sea level rise scenario of 1m, lower mean sea level tide, and 1m/day 
hydraulic conductivity.  

 

 

Figure 5. Rise in groundwater for sea level rise scenario of 2m, lower mean sea level tide, and 1m/day 
hydraulic conductivity.  

2.2. Parameter uncertainty 

For the probabilistic analysis, uncertain parameters are varied to include epistemic uncertainty in the modeling. 
These parameters fit into four main categories: ground motions, groundwater, soil, and liquefaction. 
Uncertainty in ground motions is included by using three ground motion models, each with equal probability of 
being chosen. Uncertainty in groundwater is included with equally weighted selection between three hydraulic 
conductivity values and two marine boundary conditions. Uncertainty in soil values is included in the 
geostatistical modeling parameters that define correlation in various directions and inherent randomness, 
represented by a variogram. The variogram includes three key parameters of major range, minor range, and 
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nugget. Finally, uncertainty in the liquefaction calculation comes by choosing between two empirical equations, 
and by varying the fines content constant in the Boulanger and Idriss (2014) equation.   

 
 
Table 1. Input parameters treated as uncertain in the analysis. U[a, b] denotes a uniform distribution between 
a and b. Entries in lists of models or parameter values are treated as equally likely. 
 
Category Variable Parameter range/ modelling source 
Ground motions Ground motion model Abrahamson et al. (2014), Boore et 

al. (2014) or Chiou and Youngs 
(2014) 

Groundwater Hydraulic conductivity 
[m/day] 

0.1, 1.0, 10  

Marine boundary condition LMSL, MHHW 

Soil  Variogram major range [km] U[1.5,3.0] 

Variogram minor range [m] U[8,15] 

Variogram nugget U[0.00016,0.2] 

Liquefaction Empirical equation Moss et al. (2006) or Boulanger and 
Idriss (2014) 

Fines content constant U[-0.3,0.3] 

 

3. Preliminary results 
These preliminary results show the expected liquefaction potential index across the island of Alameda in 
current conditions, as well as under 1m and 2m of SLR. This expected LPI accounts for 2430 possible 
earthquake ruptures of magnitude 5.0 and above. Figure 6 shows the expected LPI given an earthquake 
across the study area. This weighting of being conditional on an earthquake event allows for easier 
interpretation of the values than pure expected LPI values. For a single scenario, LPI of 5 or above is generally 
associated with liquefaction (Iwasaki et al. 1978). The locations with above 5 expected LPI are likely to see 
liquefaction in many of the earthquake events considered, potentially with higher values for the stronger 
earthquake events. Figure 6 shows that liquefaction hazard is not uniform across the island but is concentrated 
on the northwest and southeast parts of the island.  

 

Figure 6. Expected LPI given an earthquake across the study area of Alameda for the baseline (0m of SLR). 
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With a change in groundwater level due to sea level rise, new expected LPI values are calculated by repeating 
the procedure for the SLR cases. The change in expected LPI value for 1m of SLR is shown in Figure 7, with 
darker red color indicating a larger increase in LPI. This increase is on the order of 1, and while a few points 
have a decrease in expected LPI, this value is of a small magnitude, less than 0.5, and would not change the 
interpretation from a change of 0.  

 

Figure 7. Change between 0-1m SLR in expected LPI, given an earthquake. 

A similar trend is visible in Figure 8, showing the change from 0 to 2m of SLR. Figure 8 shows even fewer 
points with a decrease in expected LPI, and a larger magnitude for the points with an increase, going up to a 
change of 3. Most of the points with increase are along the areas with already large expected LPI values, and 
along the coastal edges of the island.   

 

Figure 8. Change between 0-2m SLR in expected LPI, given an earthquake.  

4. Conclusions 
In this paper we have demonstrated a method to incorporate sea level rise into probabilistic liquefaction hazard 
analysis. This method includes new data sources of groundwater table predictions given various levels of sea 



WCEE2024  Mongold et al. 

 
 

8

level rise, and accounts for uncertainty in boundary marine conditions and hydraulic conductivity. This 
approach is demonstrated for a case study in Alameda, CA, USA, where there is significant earthquake and 
liquefaction hazard. The treatment of unknown or underwater points permits assessment of changing 
conditions under sea level rise and correction for the bounds of data collection. The preliminary results show 
that liquefaction hazard is expected to increase in coastal locations, including in areas that already have high 
liquefaction hazard. This model can be incorporated into a seismic risk assessment to determine changes in 
the contribution of liquefaction hazard to earthquake risk under sea level rise scenarios.  
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